
Package: SimilarityMeasures (via r-universe)
September 4, 2024

Type Package

Title Trajectory Similarity Measures

Version 1.4

Date 2015-02-06

Author Kevin Toohey

Maintainer Kevin Toohey <kevintoohey@live.com>

Description Functions to run and assist four different similarity
measures. The similarity measures included are: longest common
subsequence (LCSS), Frechet distance, edit distance and dynamic
time warping (DTW). Each of these similarity measures can be
calculated from two n-dimensional trajectories, both in matrix
form.

License GPL-3

NeedsCompilation no

Date/Publication 2015-02-06 06:19:21

Repository https://awesometothemax.r-universe.dev

RemoteUrl https://github.com/cran/SimilarityMeasures

RemoteRef HEAD

RemoteSha 64107376102521049d1617fe81e3fc7a0e9bdb4d

Contents
SimilarityMeasures-package . 2
AveTranslate . 3
DistanceCheck . 4
DistanceSq . 5
Dot . 5
DTW . 6
EditDist . 7
Frechet . 8
FrechetCheck . 9

1

2 SimilarityMeasures-package

LCSS . 11
LCSSCalc . 12
LCSSRatio . 13
LCSSRatioCalc . 15
LCSSTranslation . 16
SimLoop . 18
SinglePointCalc . 19
StartEndTranslate . 20
TrajCheck . 21
TranslationSubset . 22

Index 23

SimilarityMeasures-package

Implements Several Similarity Measures and Useful Functions

Description

This package contains functions to run and assist four different similarity measures. The similarity
measures included are: longest common subsequence (LCSS), Frechet distance, edit distance and
dynamic time warping (DTW). Each of these similarity measures can be calculated from two n-
dimensional trajectories, both in matrix form.

Details

Package: SimilarityMeasures
Type: Package
Version: 1.4
Date: 2014-02-06
License: GPL-3

Author(s)

Kevin Toohey

Maintainer: Kevin Toohey <kevintoohey@live.com>

References

Alt, H. and Godau, M. (1995) Computing the Frechet distance between two polygonal curves.
International Journal of Computational Geometry & Applications, 5(01n02), 75–91.

Berndt, D. and Clifford, J. (1994) Using Dynamic Time Warping to Find Patterns in Time Series.
Paper presented at the KDD workshop.

AveTranslate 3

Chen, L., Ozsu, M. T. and Oria, V. (2005) Robust and fast similarity search for moving object tra-
jectories. Paper presented at the Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, Baltimore, Maryland.

Vlachos, M., Kollios, G. and Gunopulos, D. (2002) Discovering similar multidimensional trajecto-
ries. Paper presented at the Data Engineering, 2002. Proceedings. 18th International Conference
on.

AveTranslate Create an Average Point Translation Vector

Description

A function to calculate a translation vector for trajectory2 using the average of the two trajectories.
The vector created can be used to translate the average of trajectory2’s points to that of trajectory1.

Usage

AveTranslate(traj1, traj2)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

Details

The average of each dimension of both trajectories is calculated. The required translation is then
calculated from the difference between them.

Value

A vector of length n is returned containing the translation in each dimension. If there is a problem
this returns a string of information instead.

Author(s)

Kevin Toohey

See Also

LCSSTranslation, StartEndTranslate

4 DistanceCheck

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the translation.
AveTranslate(path1, path2)

DistanceCheck Check if Two Points Lie Within some Distance in All Dimensions

Description

A function to check whether two points lie within some distance in every dimension.

Usage

DistanceCheck(point1, point2, dist, dimensions=length(point1))

Arguments

point1 An n dimensional vector representing point1.

point2 An n dimensional vector representing point2.

dist A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

dimensions An integer representing the number of dimensions being checked. This defaults
to the length of the first vector.

Value

A boolean value is returned. The value is true if the points are within the distance in every dimension
and false if not.

Author(s)

Kevin Toohey

Examples

Creating two points.
point1 <- c(0, 2, 4, 6)
point2 <- c(0, 1, 2, 3)

Running the check with distances 1 and 3 in 4 dimensions.
DistanceCheck(point1, point2, 1, 4)
DistanceCheck(point1, point2, 3, 4)

DistanceSq 5

DistanceSq Calculate the Square Distance Between Two Points

Description

A function to calculate the square of the distance between two points.

Usage

DistanceSq(point1, point2, dimensions=length(point1))

Arguments

point1 An n dimensional vector representing point1.

point2 An n dimensional vector representing point2.

dimensions An integer representing the number of dimensions being used for the distance
square calculation. This defaults to the length of the first vector.

Value

A floating point value is returned, representing the square of the distance between the two points.

Author(s)

Kevin Toohey

Examples

Creating two points.
point1 <- c(0, 2, 4, 6)
point2 <- c(0, 1, 2, 3)

Calculating the square distance between the two points
in 4 dimensions.
DistanceSq(point1, point2, 4)

Dot Calculate the Dot Product Between Two Vectors

Description

A function to calculate the dot product between two vectors. This is used in the Frechet algorithm
and does not need to be called directly.

Usage

Dot(vect1, vect2, dimensions=length(vect1))

6 DTW

Arguments

vect1 An n dimensional vector representing the first vector.

vect2 An n dimensional vector representing the second vector.

dimensions An integer representing the number of dimensions being used for the dot product
calculation. This defaults to the length of the first vector.

Details

This function is called by the Frechet function.

Value

A floating point value is returned, representing the dot product between the two vectors.

Author(s)

Kevin Toohey

DTW Run the Dynamic Time Warping Algorithm on Two Trajectories

Description

A function to calculate the dynamic time warping value between two trajectories.

Usage

DTW(traj1, traj2, pointSpacing=-1)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation. A negative value sets the point spacing to
unlimited.

Details

The dynamic time warping algorithm (DTW) calculates the smallest warp path for the two tra-
jectories. This is the DTW version discussed by Berndt & Clifford (1994). Several variations of
calculating the warping cost exist. In this version, the warping path is equal to the sum of the
distances at each point along the path. Please see the references for more information.

EditDist 7

Value

A floating point value representing the smallest warp path is returned. If a problem occurs, then a
string containing information about the problem is returned.

Author(s)

Kevin Toohey

References

Berndt, D. and Clifford, J. (1994) Using Dynamic Time Warping to Find Patterns in Time Series.
Paper presented at the KDD workshop.

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the dynamic time warping algorithm with point spacing
set to 4.
DTW(path1, path2, 4)

EditDist Run the Edit Distance Algorithm on Two Trajectories

Description

A function to calculate the edit distance between two trajectories.

Usage

EditDist(traj1, traj2, pointDistance=20)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

Details

The edit distance algorithm calculates the minimum number of edits required to allow the two
trajectories to be considered equivalent. This function uses Edit Distance on Real sequence (EDR)
as described by Chen et al. (2005). Please see the references for more information.

8 Frechet

Value

An integer representing the minimum number of edits required is returned. If a problem occurs,
then a string containing information about the problem is returned.

Author(s)

Kevin Toohey

References

Chen, L., Ozsu, M. T. and Oria, V. (2005) Robust and fast similarity search for moving object tra-
jectories. Paper presented at the Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, Baltimore, Maryland.

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the edit distance algorithm with point distance
set to 2.
EditDist(path1, path2, 2)

Frechet Run the Frechet Calculation Algorithm on Two Trajectories

Description

A function to calculate the Frechet distance between two trajectories. The function can also be used
to test leash values.

Usage

Frechet(traj1, traj2, testLeash=-1)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

testLeash A numeric leash value, which if positive, checks whether the leash can be used
between the two trajectories. If this value is negative, then it is not used and the
standard calculation is performed.

FrechetCheck 9

Details

This algorithm calculates the Frechet distance. The Frechet metric (or distance) is generally de-
scribed in the following way: A man is walking a dog on a leash, the man walks on one curve while
the dog walks on the other (Alt & Godau, 1995). The dog and the man are able to vary their speeds,
or even stop, but not go backwards. The Frechet metric is the minimum leash length required to
complete the traversal of both curves. Please see the references for more information.

Value

A floating point value representing the Frechet distance is returned. If a test leash is given, then a
boolean value is returned as true if the leash was successful and false if not. If a problem occurs,
then a string containing information about the problem is returned.

Author(s)

Kevin Toohey

References

Alt, H. and Godau, M. (1995) Computing the Frechet distance between two polygonal curves.
International Journal of Computational Geometry & Applications, 5(01n02), 75–91.

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the Frechet distance algorithm.
Frechet(path1, path2)

FrechetCheck Checks a Frechet Leash Distance

Description

A function to check whether a Frechet leash distance is successful or not. This is used by the Frechet
calculation and does not need to be called directly.

Usage

FrechetCheck(traj1, traj2, leash, dist1, dist2, distSq12)

10 FrechetCheck

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

leash A numeric leash value to be checked by the function.

dist1 A vector containing the distance between each successive two points in trajec-
tory1.

dist2 A vector containing the distance between each successive two points in trajec-
tory2.

distSq12 A matrix containing the distance between each pair of two points where 1 point
lies in trajectory1 and the other in trajectory2.

Details

This function is required by Frechet and in general does not need to be called directly.

Value

A boolean value is returned. A value of true is returned if the leash is successful and false if not.

Author(s)

Kevin Toohey

References

Alt, H. and Godau, M. (1995) Computing the Frechet distance between two polygonal curves.
International Journal of Computational Geometry & Applications, 5(01n02), 75–91.

See Also

Frechet

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the Frechet distance algorithm with a test leash of 2.
Frechet(path1, path2, 2)

LCSS 11

LCSS Run the LCSS Algorithm on Two Trajectories Allowing Translations

Description

A function to calculate the longest common subsequence between two trajectories. This calculation
automatically uses translations to find the largest value.

Usage

LCSS(traj1, traj2, pointSpacing=-1, pointDistance=20,
errorMarg=2, returnTrans=FALSE)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation. A negative value sets the point spacing to
unlimited.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

errorMarg A floating point error margin used to scale the accuracy and speed of the calcu-
lation.

returnTrans A boolean value to allow the best translation found to be returned as well as the
LCSS value if set to true.

Details

The LCSS algorithm calculates the largest number of equivalent points between the two trajectories
when traversed in a monotone way. Possible translations are calculated in each dimension and used
to provide the maximum LCSS. The accuracy of the algorithm can be varied to provide faster or
slower calculations. Please see the references for more information.

Value

An integer value is returned. This represents the maximum LCSS value obtained using the variables
provided. If returnTrans is set to TRUE, then the LCSS value and the translations are returned
as a vector. The first value of this vector is the LCSS value and the translations follow directly
afterwards. If a problem occurs, then a string containing information about the problem is returned.

Author(s)

Kevin Toohey

12 LCSSCalc

References

Vlachos, M., Kollios, G. and Gunopulos, D. (2002) Discovering similar multidimensional trajecto-
ries. Paper presented at the Data Engineering, 2002. Proceedings. 18th International Conference
on.

See Also

LCSSCalc, LCSSRatio, LCSSRatioCalc, LCSSTranslation

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the LCSS algorithm on the trajectories.
LCSS(path1, path2, 2, 2, 0.5)

Running the LCSS algorithm on the trajectories
and returning the translation as well.
LCSS(path1, path2, 2, 2, 0.5, TRUE)

LCSSCalc Run the LCSS Algorithm on Two Trajectories Without Translations

Description

A function to calculate the longest common subsequence between two trajectories. This function
does not calculate translations and only uses the given trajectories and optional translation.

Usage

LCSSCalc(traj1, traj2, pointSpacing=-1, pointDistance=20,
trans=rep(0, (dim(traj1)[2])))

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation. A negative value sets the point spacing to
unlimited.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

trans A vector containing translations in each dimension to be applied to trajectory2
in this calculation.

LCSSRatio 13

Details

The LCSS algorithm calculates the largest number of equivalent points between the two trajectories
when traversed in a monotone way. If a translation is given then this is applied before the calculation
is done. This function is used by all of the the LCSS functions. Please see the references for more
information.

Value

An integer value is returned. This represents the maximum LCSS value obtained using the variables
provided. If a problem occurs, then a string containing information about the problem is returned.

Author(s)

Kevin Toohey

References

Vlachos, M., Kollios, G. and Gunopulos, D. (2002) Discovering similar multidimensional trajecto-
ries. Paper presented at the Data Engineering, 2002. Proceedings. 18th International Conference
on.

See Also

LCSS, LCSSRatio, LCSSRatioCalc, LCSSTranslation

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the LCSS algorithm on the trajectories.
LCSSCalc(path1, path2, 2, 2, c(0, 3))

LCSSRatio Find the LCSS Ratio using Two Trajectories Allowing Translations

Description

A function to calculate the longest common subsequence ratio using two trajectories. This calcula-
tion automatically uses translations to find the largest value.

Usage

LCSSRatio(traj1, traj2, pointSpacing=-1, pointDistance=20,
errorMarg=2, returnTrans=FALSE)

14 LCSSRatio

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation. A negative value sets the point spacing to
unlimited.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

errorMarg A floating point error margin used to scale the accuracy and speed of the calcu-
lation.

returnTrans A boolean value to allow the best translation found to be returned as well as the
LCSS value if set to true.

Details

The LCSS algorithm calculates the largest number of equivalent points between the two trajectories
when traversed in a monotone way. The ratio of this value to the smallest number of points out of
the two trajectories is then calculated. Possible translations are calculated in each dimension and
used to provide the maximum LCSS. The accuracy of the algorithm can be varied to provide faster
or slower calculations. Please see the references for more information.

Value

A floating point value is returned. This represents the maximum LCSS ratio obtained using the
variables provided. If returnTrans is set to TRUE, then the LCSS ratio and the translations are
returned as a vector. The first value of this vector is the LCSS ratio and the translations follow
directly afterwards. If a problem occurs, then a string containing information about the problem is
returned.

Author(s)

Kevin Toohey

References

Vlachos, M., Kollios, G. and Gunopulos, D. (2002) Discovering similar multidimensional trajecto-
ries. Paper presented at the Data Engineering, 2002. Proceedings. 18th International Conference
on.

See Also

LCSSCalc, LCSS, LCSSRatioCalc, LCSSTranslation

LCSSRatioCalc 15

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the LCSS ratio algorithm on the trajectories.
LCSSRatio(path1, path2, 2, 2, 0.5)

Running the LCSS ratio algorithm on the trajectories
and returning the translation as well.
LCSSRatio(path1, path2, 2, 2, 0.5, TRUE)

LCSSRatioCalc Find the LCSS Ratio using Two Trajectories Without Translations

Description

A function to calculate the longest common subsequence ratio using two trajectories. This function
does not calculate translations and only uses the given trajectories and optional translation.

Usage

LCSSRatioCalc(traj1, traj2, pointSpacing=-1, pointDistance=20,
trans=rep(0.0, (dim(traj1)[2])))

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation. A negative value sets the point spacing to
unlimited.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

trans A vector containing translations in each dimension to be applied to trajectory2
in this calculation.

Details

The LCSS algorithm calculates the largest number of equivalent points between the two trajectories
when traversed in a monotone way. The ratio of this value to the smallest number of points out
of the two trajectories is then calculated. If a translation is given then this is applied before the
calculation is done. Please see the references for more information.

16 LCSSTranslation

Value

A floating point value is returned. This represents the maximum LCSS ratio obtained using the
variables provided. If a problem occurs, then a string containing information about the problem is
returned.

Author(s)

Kevin Toohey

References

Vlachos, M., Kollios, G. and Gunopulos, D. (2002) Discovering similar multidimensional trajecto-
ries. Paper presented at the Data Engineering, 2002. Proceedings. 18th International Conference
on.

See Also

LCSS, LCSSRatio, LCSSCalc, LCSSTranslation

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the LCSS ratio algorithm on the trajectories.
LCSSRatioCalc(path1, path2, 2, 2, c(0, 3))

LCSSTranslation Create a Translation Vector Using LCSS

Description

A function to return the best translation calculated using the LCSS method. The vector created
can be used to translate trajectory2’s points to the position of the maximum LCSS found with
trajectory1.

Usage

LCSSTranslation(traj1, traj2, pointSpacing=-1, pointDistance=20,
errorMarg=2)

LCSSTranslation 17

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation. A negative value sets the point spacing to
unlimited.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

errorMarg A floating point error margin used to scale the accuracy and speed of the calcu-
lation.

Details

The LCSS function is called using the two trajectories along with the given variables. The optimal
translation vector is then returned from this result. Please see the references for more information.

Value

A vector of length n is returned containing the translation in each dimension. If a problem occurs,
then a string containing information about the problem is returned.

Author(s)

Kevin Toohey

References

Vlachos, M., Kollios, G. and Gunopulos, D. (2002) Discovering similar multidimensional trajecto-
ries. Paper presented at the Data Engineering, 2002. Proceedings. 18th International Conference
on.

See Also

AveTranslate, StartEndTranslate

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the translation.
LCSSTranslation(path1, path2, 1, 1, 0.5)

18 SimLoop

SimLoop Loop Over and Test Trajectories With Different Translations

Description

Function to loop over and test the trajectories using the different translations in each dimension.
This is used by the LCSS function to test all of the n dimensional translations. Do not call this
function directly.

Usage

SimLoop(traj1, traj2, pointSpacing, pointDistance, spacing,
similarity, translations, dimensions,
dimLeft=dimensions, currentTrans=rep(0, dimensions))

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

spacing The integer spacing between each translation that will be tested.

similarity A vector containing the current best similarity and translations calculated.

translations A list of vectors containing the translations in each dimension.

dimensions An integer representing the number of dimensions being used for the calculation.

dimLeft An integer number of dimensions which have not been looped over yet.

currentTrans A vector containing the current translation being tested.

Details

This function is used to loop over the n dimensions for the LCSS function. This function should not
be called directly.

Value

Returns the current best LCSS value and the translations that created this as a vector.

Author(s)

Kevin Toohey

SinglePointCalc 19

See Also

LCSS, LCSSRatio, LCSSRatioCalc, LCSSTranslation, LCSSCalc

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the LCSS algorithm on the trajectories.
LCSS(path1, path2, 2, 2, 0.5)

SinglePointCalc Calculate Frechet Distance With a Single Point Trajectory

Description

A function to calculate the Frechet distance between two trajectories. This function is called by the
frechet function when one trajectory consists of a single point. This function does not need to be
directly called.

Usage

SinglePointCalc(traj1, traj2)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

Details

This calculates the longest distance to the single point trajectory. This is the Frechet distance for
such a pair of trajectories. This function is automatically called if required by the Frechet function,
therefore it does not need to be called directly.

Value

A floating point value representing the Frechet distance is returned.

Author(s)

Kevin Toohey

20 StartEndTranslate

See Also

Frechet

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1), 1)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the Frechet distance algorithm which will
automatically call this function.
Frechet(path1, path2)

StartEndTranslate Translate a Trajectory Based on Start and End Points

Description

A function to translate, rotate and scale the points of trajectory2 using trajectory1. The new trajec-
tory will have the same start and end points as trajectory1.

Usage

StartEndTranslate(traj1, traj2)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

Details

Every point of trajectory2 is rotated, scaled and translated so that the start and end points of the two
trajectories match. The new variation of trajectory2 is returned as a matrix.

Value

An m x n matrix containing the new variation of trajectory2 is returned. Here m is the number of
points and n is the dimension of the points.

Author(s)

Kevin Toohey

TrajCheck 21

See Also

LCSSTranslation, AveTranslate

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)

Running the translation.
StartEndTranslate(path1, path2)

TrajCheck Checking Two Trajectories are Matrices of N Dimensional Points

Description

This function checks whether two trajectories are compatible with the functions provided. They are
first checked if they are represented as matrices. They are then checked to ensure that points in both
trajectories have the same dimensions.

Usage

TrajCheck(traj1, traj2)

Arguments

traj1 An m x n matrix containing trajectory1. Here m is the number of points and n is
the dimension of the points.

traj2 A k x n matrix containing trajectory2. Here k is the number of points and n is
the dimension of the points. The two trajectories are not required to have the
same number of points.

Details

This function is useful for determining if the trajectories are compatible with the many functions
provided. This function is performed at the start of most other functions to ensure that no major
errors can occur and that the results make sense.

Value

If there is a problem with one of the checks then a string containing information is returned. If all
of the checks pass then -1 is returned.

Author(s)

Kevin Toohey

22 TranslationSubset

Examples

Creating two trajectories.
path1 <- matrix(c(0, 1, 2, 3, 0, 1, 2, 3), 4)
path2 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 4)
path3 <- matrix(c(0, 1, 2, 3, 4, 5, 6, 7), 2)

Running the trajectory check on the trajectories.
TrajCheck(path1, path2)
TrajCheck(path1, path3)

TranslationSubset Calculate the Subset of Translations for LCSS

Description

A function for calculating the subsets of translations to be tested using the LCSS methods.

Usage

TranslationSubset(traj1, traj2, pointSpacing, pointDistance)

Arguments

traj1 A vector containing one dimension of trajectory1.

traj2 A vector containing one dimension of trajectory2.

pointSpacing An integer value of the maximum index difference between trajectory1 and tra-
jectory2 allowed in the calculation.

pointDistance A floating point number representing the maximum distance in each dimension
allowed for points to be considered equivalent.

Details

This function is called by the LCSS method to calculate the translations required.

Value

A vector of floating point numbers is returned containing the translations calculated. This vector is
sorted in ascending order.

Author(s)

Kevin Toohey

See Also

LCSS

Index

∗ package
SimilarityMeasures-package, 2

AveTranslate, 3, 17, 21

DistanceCheck, 4
DistanceSq, 5
Dot, 5
DTW, 6

EditDist, 7

Frechet, 6, 8, 10, 19, 20
FrechetCheck, 9

LCSS, 11, 13, 14, 16, 18, 19, 22
LCSSCalc, 12, 12, 14, 16, 19
LCSSRatio, 12, 13, 13, 16, 19
LCSSRatioCalc, 12–14, 15, 19
LCSSTranslation, 3, 12–14, 16, 16, 19, 21

SimilarityMeasures
(SimilarityMeasures-package), 2

SimilarityMeasures-package, 2
SimLoop, 18
SinglePointCalc, 19
StartEndTranslate, 3, 17, 20

TrajCheck, 21
TranslationSubset, 22

23

	SimilarityMeasures-package
	AveTranslate
	DistanceCheck
	DistanceSq
	Dot
	DTW
	EditDist
	Frechet
	FrechetCheck
	LCSS
	LCSSCalc
	LCSSRatio
	LCSSRatioCalc
	LCSSTranslation
	SimLoop
	SinglePointCalc
	StartEndTranslate
	TrajCheck
	TranslationSubset
	Index

